Characterization of a chip-based bioreactor for three-dimensional cell cultivation via Magnetic Resonance Imaging.
نویسندگان
چکیده
We describe the characterization of a chip-based platform (3(D)-KITChip) for the three-dimensional cultivation of cells under perfusion conditions via magnetic resonance imaging (MRI). Besides the chip, the microfluidic system is comprised of a bioreactor housing, a medium supply, a pump for generating active flow conditions as well as a gas mixing station. The closed circulation loop is ideally suited for a characterization via MRI since the small bioreactor setup with active perfusion, driven by the pump from outside the coils, not only is completely MRI-compatible but also can be transferred into the magnetic coil of an experimental animal scanner. We have found that the two halves of the chip inside the bioreactor are homogeneously perfused with cell culture medium both with and without cells inside the 3(D)-KITChip. In addition, the homogeneity of perfusion is nearly independent from the flow rates investigated in this study, and furthermore, the setup shows excellent washout characteristics after spiking with Gadolinium-DOTA which makes it an ideal candidate for drug screening purposes. We, therefore, conclude that the 3(D)-KITChip is well suited as a platform for high-density three-dimensional cell cultures, especially those requiring a defined medium flow and/or gas supply in a precisely controllable three dimensional environment, like stem cells.
منابع مشابه
Fabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملApplication of computed tomography and magnetic resonance imaging fusion images for delineating gross tumor volume in three-dimensional conformal radiotherapy of nasopharyngeal carcinoma
Background: To evaluate computed tomography (CT) and magnetic resonance imaging (MRI) fusion images for delineating gross tumor volume (GTV) in three-dimensional conformal radiotherapy (3D-CRT) of nasophanrygeal carcinoma (NPC), and compare treatment outcomes between CT- and CT+MRI-based targets. Materials and Methods: A total of 120 NPC patients treated with 3D-CRT were included, in which, 60 ...
متن کاملOptimization of Bioreactor Cultivation Parameters by Taguchi Orthogonal Array Design for Enhanced Prodigiosin Production
One of the major steps toward the industrialization of the microbial product(s) is to optimize the cultivation conditions at the large-scale bioreactor and successfully control the microbial behavior within a large scale production environment. Statistical Design of Experiment was proven to optimize a vast number of microbial processes to achieve robustness and explore possible interactions...
متن کاملA Novel Biocompatible Nanoprobe Based on Lipoproteins for Breast Cancer Cell Imaging
Objective(s): Contrast-enhanced magnetic resonance imaging (MRI) of breast cancer provides valuable data on the disease state of patients. Biocompatible nanoprobes are expected to play a pivotal role in medical diagnosis in the future owing to their prominent advantages. The present study aimed to introduce a novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging.<br...
متن کاملA New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite
Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zeitschrift fur medizinische Physik
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2013